bigstock-Isometric-Internet-Security-Lo-238957666-Converted-01

Protect Your Things

IoT Is Only Getting Bigger

The Internet of Things (IoT) is growing larger day by day. With thermostats monitoring and virtual personal assistants listening, it’s getting quite easy to become surrounded by things. Things are great! They can help you turn on lights and buy dog food and find out what the weather is like without having to look out a window. But things do come with risks. These things could risk your network security, data, users, intellectual property (IP), and even your entire company!

internet of things (ioT)
Connected to everything with cybersecurity

It’s to be expected, really, if you think about it. Each device asks to connect to your network and then monitors something, often communicating out to the Internet. Each thing is now a new window or door into your network – a new safety vulnerability disguised as a handy device.

People Forget About Security

Often, people add smart devices in their homes and offices without any thoughts of security. It’s assumed that the company who created the device was smart enough to add in some measure of safety. Sometimes this is true with the more conscientious manufacturers, but many times network safety is sacrificed for speed to market (gotta get those sales numbers up). This isn’t safe for your home network, and it can be disastrous for your office network.

open network
Opening your network to leaks due to devices

Imagine an enemy agent out there watching your company. Suddenly, a thing pops up on his radar. To you, it’s just a little monkey on your desk that opens its umbrella when it is going to rain (and if that doesn’t exist, it really should). To the enemy agent, it’s a poorly protected entry point to your company’s network. The monkey might tell you that it’s going to rain, but what it isn’t telling you is that the rain is really the tears of your company as all its important information is exploited.

Insecure IoT Can Ruin Your Company

The monkey might be a simplistic and dramatic example, but the main points are solid. Adding unsecure items to your office network can be disastrous. Though we highlighted a frivolous IoT toy, there are many things that are very valuable and useful to businesses and organizations: the aforementioned thermostat, moisture sensors, factory automation things, HAL 9000, security devices, and even a fishtank in a casino!

The first thing to do is make an IoT security plan (i.e., what to do when someone wants to add a new device to your network), and the first step of that plan is to take the new device to the IT department for evaluation. Is it from a known and/or trusted manufacturer? Does it have any safety features built into it? Does it often get its firmware updated? Who will monitor and make sure updates are done in a timely manner (this one is really important)? In short, is this good for the company (read: worth the risk to your network)?

How to securely add a device to your network, discuss with your IT department

Making a plan gets everyone in the habit of thinking before they add a new thing – and, to be quite blunt, users should never stop thinking. But we want to make your IoT security easier and safer – with Fognigma.

Fognigma takes a multi-prong approach in protecting your things by protecting everything on your network. In a nutshell, Fognigma creates a Mission Partner Network (MPN) in parts spread out across multiple cloud platforms, which function as one. This creates an invisible-to-outsiders network in which your data, your communication tools, even your current network (depending on your Fognigma deployment) live. Your IoT devices are also inside the protection of your MPN, as well.

IoT devices connect to the MPN through a bit of hardware called a Wicket. Depending on how you have your IoT spread out through your organization, each device can have its own Wicket, or they can clump into little IoT hives and several devices can connect through one Wicket. Once connected to the MPN, your things are now invisible to external threats.

MPNs prevent metadata snooping (a key way third parties discover networks to exploit), which means network threats won’t even know your IoT devices exist. Fognigma is already in line with the NIST’s recommendations for IoT security by wrapping each connection inside an MPN with the recommended AES-256 encryption. Only, Fognigma doesn’t just use one layer of AES-256 encryption – everything inside your MPN is double wrapped for extra security.

A company that uses Fognigma will have a major advantage in the IoT world, as Fognigma makes sure your IoT remains only your IoT. That’s the magic of Fognigma. We’d like to chat more about this, but the thing on our wrist (which is connected to our phone, which is connected to the refrigerator) is telling us it’s time to get up and get a snack.

Secure keys for office

Printers – PC Load Vulnerability

Printers Are Forgotten About

Every office has at least one printer – quite often, a multi-function machine that also scans and faxes. These machines allow us to distribute hard copies of things, print out websites for the older workers to write their comments on, create signs playing practical jokes on Joe from Accounting, and other very important office things. Everyone oohs and aahs when the new printer arrives, but after it’s installed and hooked to the network, no one thinks about it again until one of its consumables needs replacing. The printer becomes almost a piece of furniture – it has a function, but other than that it just sits there. Until it becomes a portal for intruders, that is. Printer Security may be the last thing on your entire office’s mind, but should it be?

Printers Can Be Gateways of Evil

There are many long-running Internet jokes on how printers are evil. In fact, they aren’t really. Sure, they have to be tended to now and again, but it’s normally just for the feeding of paper and ink/toner. What printers can be, though, are ignored gateways for evil to reach into your networks. Think about it: devices are added to networks all the time and we’ve been trained to properly protect and secure them (which is good). But for some reason, we often seem to forget that printers are devices existing on our network, too. We forget that printers have reach to all our computers. We forget to include printers inside our shell of cybersecurity. Many of us have grown up with printers always there (especially when compared to the vast army of IoT products that have been amassing to take money from our wallets in the last handful of years), and just trust them to be there and be safe.

Secure keys for office
How secure is your office hardware?

And this is exactly what infiltrators want us to do: forget to protect our printers. Because if our printers aren’t protected, infiltrators have a gateway from which to invade our networks.

Printers Can be Exploited – Printer Security

Printers, just like any unprotected IoT device, can be exploited in a number of ways. One of the main ways printers can be compromised is through DNS rebinding attacks. DNS rebinding allows malicious attackers to squeeze around your firewall and find and exploit unprotected devices, such as printers. According to a study by Armis, an estimated 66% of printers from all major brands are vulnerable to DNS rebinding – that’s approximately 165 million printers.

Once a printer has been perforated (old school dot matrix joke there), infiltrators can do a variety of things. The first thing they might do is download all the documents being printed, scanned, or cached on the printer. Those could be as simple as business flyer drafts and as dangerous as tax forms and contracts.

But the damage doesn’t stop there. Once they’ve pierced through your printer, evil-doers can spread throughout your network finding more to exploit. From your printer, they can spread like any other network invasion, installing ransomware, taking over systems, and every other bad thing you can imagine.

Fognigma Protects Printers

Want to make sure your printers are safe? The easiest way is to plug it into a little device called a Wicket, which pulls the printer onto your Fognigma-created network. Because your printer is now protected by Fognigma, it can’t be detected by those looking for network vulnerabilities because your entire network can’t be detected. Don’t have Fognigma yet for your cybersecurity? Well, read on to learn more and how it is a game changer in the realm of cybersecurity.

Wicket Printer Setup
A Fognigma Wicket added to a printer

Fognigma enterprise software gives you the power to create truly invisible networks. Fognigma builds secure and traceless networks by using randomly leased components spread out across multiple clouds which function together as one network. Fognigma networks are wrapped in two layers of AES-256 encryption and hide and protect your communications, files, users, network, and yes, even your printers.

Any device connected to your Fognigma-created network doesn’t seem to exist to the world, so won’t be a target for exploitation. As stated before, printers tend to be forgotten about. We plug them in, connect them to our network, and then use them until they are replaced by a new version. Lather. Rinse. Repeat. But now, just as easily as you would connect them to a regular network, you are attaching them into a Fognigma network.

And, also just to make it clear, Fognigma does in fact protect your printer, but it does secure so much more. We focused on printers as an easy-to-abuse access point for violating an organization’s network, but Fognigma protects everything your organization holds dear. It also has many other valuable features, such as obfuscating network traffic, traceless telephony, encrypted file share, and the ability to safely access your Fognigma network from anywhere in the world on any device.

 

Fognigma is ready to protect your organization’s entire network with leading-edge technology. We just wanted to make sure you knew your printers would be safe, too.

Isometric vector Internet hacker attack and personal data security concept. Computer security technology. E-mail spam viruses bank account hacking. Hacker working on a code. Internet crime concept

Defeating Browser Fingerprinting with Fognigma

You’re Always Being Watched Online

As Joseph Heller aptly wrote in Catch-22, “Just because you’re paranoid doesn’t mean they aren’t after you.” This statement accurately parallels the plight of those who take their online security seriously. Many of us concerned with cybersecurity use countless programs and plugins to thwart online tracking, which might seem paranoid to some. But we know the truth: online, they really are after you.

And who ‘they’ are almost doesn’t matter. They are the ones who want to track your every online move. They are the ones who want to know who you are, where you come from, and what you are doing so they can use that information. Sometimes, this info is just used to market to you, or anonymously track where you look on a website so the site’s design can be made more user friendly. By 2020, profits for data about you and your online activities are expected to reach an estimated $210 billion dollars – a compound annual growth rate of 11.9%. But unfortunately, all too often, this data is used by a more nefarious ‘they’ – the ‘they’ cybersecurity attempts to protect you against. The ‘they’ who will find a way into your network, so they can suck the sweet marrow inside, leaving you with just a brittle shell of your company.

How Do ‘They’ Find You?

Everyone knows about all the flavors of cookies that exist out there – regular cookies, evercookies, supercookies – each tracking something about your online activity. It’s even easier to know about cookies now that GDPR compliance is being enforced. But there are other ways you can be tracked online, ways that are often more difficult to detect and stop than cookies. We’re talking about browser fingerprinting.

Browser fingerprinting, in the TL;DR version, is the act of observing online patterns and deducing from where and whom the patterns were created. It’s easier to illustrate by example. Picture your morning. Most likely, you get up at the same time, head to work at the same time, go to work via the same route, work at the same location, eat lunch at the same time (often, at the same place), leave work at the same time, head home via the same return route, and go to bed at the same time. Lather. Rinse. Repeat. Quite quickly, a very distinct pattern (your pattern-of-life) develops – one which can be exploited to figure out things about you and, in many circumstances, to figure out exactly who you are.

Browser Fingerprinting
Daily online behaviors, systems can learn from online routines

Online, it’s the same thing. Whether you know it or not, you have patterns of online behavior – sites you frequent, time of day you check things, location when you are checking, connection type you use, and so much more. Once it’s analyzed, your online pattern of behavior can disclose quite a lot of information about you and, again, sometimes even exactly who you are. There’s only way to fully protect yourself. You must disappear.

Fognigma Defeats Browser Fingerprinting

Imagination time again. Now picture you go to work like normal, except this time instead of going from your home to your work, you appear suddenly at the Eiffel Tower and begin working from there. When it is time for lunch, you eat a delicious meal, but no one sees it happen. To observers, you never had lunch at all. And rather than anyone able to witness your traffic-filled commute home, you simply disappear from your table at Le Jules Verne as if you never had been there at all.

The point is: Fognigma obscures your actual location, movement, and intent. A Fognigma network is built from randomly leased components from cloud providers all over the world combined to form one network. You enter the network through an entry point which may or may not even be in your own country. Inside the network, your traffic might be routed through dissociating joints (depending on your deployment configuration) before leaving through an exit point possibly on a different continent. Anyone trying to trace your location will see you as existing wherever that exit point is.

leased cloud components
Randomly leased cloud components

And guess what? Your entry and exit points today might not be the same tomorrow – same with the entire configuration of your Fognigma network. Fognigma networks can easily be burned down and rebuilt (either with the same or different configuration) with just a few mouse clicks. The cloud components are wiped clean and returned to the cloud, only to be written over when next they are used. When you rebuild your network, you can choose new entry and exit points in different places. You can do this build/burn/rebuild at any time – even on a scheduled and automated basis.

Now, you no longer have an observable pattern. You might still go to the same sites around the same time, but you will appear to be doing it from different cities, countries, and/or continents. By constantly shifting your perceived location, your activity just becomes static in the soothing white noise of the Internet’s global Om. In short, you won’t even appear to be you.

Fognigma helps you thwart the ‘they’ who are after you, but you’re on your own with your paranoia.

Isometric business people talking conference meeting room. Team work process. Business management teamwork meeting and brainstorming. Vector illustration

Fognigma: Protecting from the Inside

The Threat is Inside the Building!

Often, Cybersecurity is thought of as a process of looking out to the world and searching, scanning, and bracing for what might be out there. It’s an ongoing process – a valiant mission – to plan for the worst. It’s a constant battle against external threats discovering things about you and using those discoverings against you. Unfortunately, if you are only looking for and protecting against external threats, you’re only doing part of your job. Cybersecurity should always be viewed as looking in two directions at once: external and internal. It is imperative you don’t ignore the possibility of internal threats.

Internal threats, of course, come from inside your organization. They are your employees, your coworkers, and sometimes even your friends. It is hard to imagine they would willingly do anything to betray your organization. But wait! Internal threats are not always the criminal, calculated schemes that feed our movies and television shows. Many times, internal breaches are due to a variety pack of non-nefarious reasons. Let’s explore more, shall we?

Non-Malicious Insider Threats

Quite often, the employees who become non-malicious insider threats (NMIT) don’t even know they are doing anything wrong. These are the people who check work email on public computers and then forget to log out of their applications. These are the employees who do work while at coffeeshops on unsecure networks. These are the ones forwarding work emails to their personal email addresses, so they can continue working from home.

checking email

Or perhaps the employees are, in fact, willfully doing something wrong, but they justify it as necessary to get their job done.  The Government Research Council (GRC) did a study on government employees’ use of approved mobile devices. The GRC found around one-third of respondents were using personal devices to do business work on. Of that third, 94% of DoD and military employees, and 64% of civilian employees, were using personal devices that had not been approved by their agency.

Better cybersecurity education can really go a long way to stopping many NMITs from forming in any organization. Employees should be taught not only what is acceptable and what isn’t, but also why certain online behaviors are dangerous. They should be taught how immense their impact is in the organization’s cyber security plan and how cyber security is a company-wide endeavor.

There is one other way to severely hamper both malicious and non-malicious insider threats, something Fognigma excels at: granular user controls.

Fognigma Networks Protect Against Insider Threats

Fognigma gifts network administrators with granular user controls. Quite simply, granular user controls allow the admin complete control over every little aspect of a user’s permissions inside a Fognigma-created Mission Partner Network (MPN). From which components to which files to which entry and exit points, admins will be able to make sure each user has access to only those things they need to access. This method of precise control is accomplished by creating groups.

Groups exist for each part of a Fognigma network. With just a few mouse clicks, users are added to very specific groups, which give them access to specific components, features, and even entry and exit points. And just as easy as they are added, users can be removed from groups.

We can explain this better by using an example. Our example company is called The Company and boasts 400 happy (and imaginary) employees. The Company has deployed Fognigma and is enjoying the protection and anonymity it provides. A new employee is hired: Jay. The Company’s HR team is on point and have already completed an IAM (Identity and Access Management)  assessment for Jay. As a new accountant, Jay needs access to certain things and shouldn’t see other things.

Admin Controls

The network admin who handles all permissions begins adding Jay to groups inside their MPN. He gets added to the company-wide telephony system group, the company-wide message server group, and the company-wide file share group. Jay is then added to the accounting fileshare group and accounting private channel on the company-wide message server group – each consisting of the CEO and the four-person accounting department. No other employees can access these groups, which thus limits the exposure of sensitive financial data to just 1.25% of the company.

Jay is not added, however, to the dev file share or the dev private messaging channel group (which Jay doesn’t even know exists). Jay doesn’t need access to any of the development team’s research or discussion. Not that he would (he’s a good dude), but this limited access prevents Jay from even contemplating leaking company development secrets – he just can’t get to them.

And here comes the really cool part. Imagine, after a few months, Jay realizes a new computer process would greatly help accounting with their accounts payable work flow. He mentions it to the CEO, who loves the idea. A new private messaging channel group is formed. Inside that group are Jay, the CFO, and two developers assigned to the task. No one else in the company can access this messaging group. Inside, these four employees can discuss and develop the new process.

Fognigma Networks

Three months later, the process is rolled out for the company to use. The accounting department is thrilled. The private messaging group is no longer needed, so is easily  deleted. And the rest of the company? Well, they didn’t need to know about any of this, so they didn’t. Everyone is containerized within their own little spheres, preventing each user from having too much access to what goes on inside the company.

This example serves to illustrate just a fraction of how Fognigma’s use of groups can limit user access and temptation. And by limiting access, Fognigma’s granular user controls prevent problems before they even can develop.

bigstock-Isometric-Cloud-Computing-Conc-243793318-Converted-01

How Fognigma Can Aid an Elderly Network Structure

An Elderly Network Structure is Rife with Vulnerabilities

Many times, there is an inherent problem with how government and/or larger/older agencies build their infrastructure. It makes sense how it happens, so it seems like it should be able to be prevented. But alas, normally budget and time prevent the proper formation and revision of infrastructure. What are we talking about here? In a word: Frankenstein’s monster.

Frankenstein’s monster, as everyone knows, was put together by using bits from various systems (a nicer way of saying body parts, which works better for this analogy). Attached as needed and jerry-rigged together, all the components eventually formed one functioning whole. In Frankenstein, the whole (monster) worked fine, but was rejected by society. That is, it worked but was quite vulnerable to outside threats. See where we going with that?

Frankenstein Parts
Parts form to create a network infrastructure

Unfortunately, the infrastructure of many larger and older agencies has also been put together as needed over time. Also, many times software applications are built or adapted to do one task in the organization, and it’s just easier and more cost effective to continue as per (business as) usual than migrate data into new programs and processes. The longer the agency exists, the more parts might get retrofitted together in a tenuous web that works . . . but just barely.

Frankenstein in Armor

Now, try to imagine fitting Frankenstein’s monster with a custom suit of armor. It might seem easy to surround the creature’s piecemeal form, but it won’t offer all the components perfect protection. Once an enemy knows how to penetrate your armor, the whole monster is going down. It’s the same with cybersecurity for our example agencies with antiquation issues. You might be able to get some form of network security around the network, but it really won’t completely protect the components.

That’s because each component has its own unique features (read: issues) and doesn’t always talk to other programs well.  We’ve all had that experience of saving a file from one program the only way possible and then having to do a bunch of leg work to import it into the program you actually use to analyze the data. Again, it works . . . but just barely. And if anything goes wrong along the way, the whole system falls apart.

data integration
Integrating data into various programs

So, what can the Fognigma enterprise software do to help? In short, it can make sure all your processes, software, and data (no matter how antiquated and/or unique) are protected from evildoers and available to your users.

Fognigma Surrounds Your Current Network with Encryption and Invisibility

The deployment option for Fognigma we’ll feature here is the Hybrid Deployment. This takes your existing network (which you already have working and running the software you need) and surrounds it in a cloaked shield of security. Your network will now be behind an ever changeable, always adapting, cloud-based network with two layers of AES-256 encryption between components.

What makes a Fognigma Mission Partner Network (MPN) different is that it’s built in parts across multiple cloud providers, with these parts working as one network. As a result, you have an invisible network built on public cloud infrastructure. A network you can manually or schedule-y burn down and rebuild whenever you want. You are replacing the armor around Frankenstein’s monster repeatedly in different configurations.

And don’t worry about the parts after burning. An MPN is made up of randomly leased pieces across multiple cloud networks. When you burn down your MPN, those fragments get wiped and returned to the pool to be used (and further overwritten) by some other project. When you rebuild your MPN, you’re using all new, randomly leased cloud bits. This is what makes your network invisible: the parts are random, and they change to other random parts. Interlocutors won’t even know to look for something to invade and exploit.

So, does Fognigma fix your antiquated process and/or software? Nope, only your agency can do that. What Fognigma can do is make sure the old vulnerabilities of your network are enveloped in a protective coating of encrypted, traceless, random goodness. To tie this back to our original example of Frankenstein’s monster… okay, so there really isn’t a way to tie it in. Frankenstein’s monster is never given the ability to blend into normal society and become invisible. But wait! Since this is fiction and we can set our own rules, Fognigma wrapping up your network is like Frankenstein’s monster wrapping himself in ever-changing armor and then draping all that in Harry Potter’s invisibility cloak (assuming it was long enough). Boom – puttin’ on the Ritz!

bigstock-Isometric-Cloud-Computing-Conc-243793318-Converted-01

Fognigma in the Intelligence Community

Fognigma Encrypts and Protects your Inter-Agency Collaboration & Intelligence Community

Fognigma is an enterprise software product perfectly suited to enhance and protect the information and communications of those in the Intelligence Community by creating Mission Partner Networks (MPN). Not only does Fognigma shroud comms in encryption and invisibility, but it also allows for secure inter-agency collaboration on whatever the mission entails.

Inter-Agency Collaboration
Inter-Agency Collaboration

Fognigma’s MPNs are built from randomly leased virtual machines which function as one unified network. Users from multiple agencies can quickly be added to this new network, making sure missions aren’t delayed. Inside the MPN, everyone can share and communicate, accomplishing mission objectives even faster. And then, when the mission is over, the MPN can be burned down as if it never existed.

Fognigma Protects Agents at Desks and in the Field

And it goes a bit beyond thinking of an intelligence community full of people in offices on desktop computers. Agents need to be able to go into the field and still access the MPN and be secure. Fognigma MPNs easily extend their encryption powers to mobile devices. And when an untrusted person needs to communicate securely with the team, an administrator can deploy a Portal Proxy (a secure, disposable way for a user to access an MPN without ever needing to know where that MPN is) in under a minute, and then delete it just as quickly when the untrusted person no longer needs access.

Encryption on Mobile Device
Encryption on mobile device

Now think about this statistic: according to a 2017 University of Phoenix survey, 51% of vacationers think their computers are just as secure on vacation as they are at home. Not saying your team members aren’t up-to-date on the limits of some forms of cybersecurity, but it’s still a chilling warning on how many view mobile cybersecurity. It especially applies to untrusted assets.

Use Case: A Mission Partner Network In Action

Let’s examine an example, because stories are fun:

A center like the CTIIC (Cyber Threat Information Integration Center), which we’ll call The Center, needs a multinational taskforce of agencies to investigate cyberthreats in Section 31. Three agencies are involved in this collaboration: one in the US, one in the UK, and one in Japan. Fognigma creates an MPN uniting these agencies, integrating a messaging server, a secure telephony system, and virtual desktops (VDIs) for every agent (including those in the field). With the MPN active, agents can collaborate on tracking down the nature of the cyberthreats.

MPN

On day thirteen, an employee of a small delivery company is convinced by an agent to provide information he has on the threats. We’ll call him Mr. Green. Using a Portal Proxy, Mr. Green is allowed very limited and controlled access to the MPN, so he can share his information. After the intel is recorded, the Portal Proxy is burned down and ceases to exist. At no time could Mr. Green access any information on the MPN not specifically shared with him.

intelligence community collaboration with mission partner networks
MPN Agency Collaboration

Mr. Green’s information is corroborated, warrants are issued, and arrests are made. The cyberthreat is no more. All three agencies celebrate in a secure chat, thank each other for their help, and log off of the MPN. The Administrator writes a few last notes in her report and, like the Portal Proxy used to talk to Mr. Green, burns the MPN to the ground. While it was in use, The Center’s MPN was never able to be seen, never able to be traced, and now that the operation is concluded, there’s not a shred of evidence it ever existed in the first place.

Mission accomplished.

In closing, we present the words of Paulo Shakarian (Entrepreneurial Professor at Arizona State University and CEO/Founder of CYR3CON), “You can have fantastic cybersecurity, but if you’re using IT systems to share information with a partner whose cybersecurity isn’t up to snuff, then your protection measures don’t mean very much.”1 Fognigma not only protects your agency’s comms and collaboration, but also protects and secures the work you do with other organizations through the encrypted and invisible wonder: the Mission-Partner Network.

 

1 Cameron, Dell. “Top Defense Contractor Left Sensitive Pentagon Files on Amazon Server With No Password,” Gizmodo. Gizmodo Media Group, 31 May 2017. Web. 15 March 2018.

Isometric personal data protection web banner concept. Cyber security and privacy. Traffic Encryption, VPN, Privacy Protection Antivirus. Vector illustration

Fognigma: In Brief

Fognigma Makes Your Communication and Collaboration Invisible

Fognigma is a super-secure communication tool that automatically builds and creates encrypted, cloaked networks (called Mission Partner Networks, or MPNs for short), which allow total protection and anonymity of communication traffic. Basically, with Fognigma, you can communicate with your team without any worry of leaks, hacks, or traces. Fognigma turns you into a communications ninja – strong, undetectable, and able to vanish in an instant.

Your Fognigma-created MPN is a randomly generated set of components which work together and are spread out across multiple clouds. No one can tell where your network exists, because it exists in parts in many places at once. And communication between parts is secured using two layers of AES-256 encryption.

Mission Partner Network
A Mission Partner Network created by Fognigma

At the heart of your network is the Wheel. The Wheel is the central hub where all your communication tools (telephony, voice and video conferencing, chat messaging, file transfer, remote workstations, etc.) live. The Administrator has complete control over which tools are available and to whom.

Data, Users, and Traffic are All Encrypted and Disassociated

Users securely connect to the Wheel by going through an entry point of your network and then through zero to three dissociating joints (depending on how you’ve built your MPN). Dissociating joints help to anonymize your connection and can be located in a different region or cloud. Upon exiting the Wheel, users again go through one or more dissociating joints (also, possibly in different regions or clouds). This makes discovering the actual location of the user impossible.

Encrypted Traffic
Encrypted Data, Traffic, & Users

Data, video, chat, files, speech, and any other information transmitted through a Fognigma-created network go through these same dissociating joints. And the entire network is protected by cascading AES-256 encryption between components.  Also, each Wheel is uniquely keyed, so even if someone could break the encryption of one Wheel, no other Wheels would be compromised.

Fognigma Creates Secure Networks in Mere Minutes

Administrators can use Fognigma to quickly launch a network within minutes. They can monitor use and manage assets, while letting the network handle its own maintenance. The MPN can also randomly move components across regions and clouds to avoid threats. And if you have a less-than-trustworthy contact that needs to be added, it can easily and safely be done (with restrictions on access, so as not to jeopardize your data, users, or network).

And just as fog can come and go in an instant, so can a Fognigma MPN. When it has overstayed its welcome (or as a routine cybersecurity program), an MPN can be completely burned to the ground as if it never existed at all. And no one can ever find what was never there!